A note on the Penrose junction conditionsMichael

نویسندگان

  • Michael Kunzinger
  • Roland Steinbauer
چکیده

Impulsive pp-waves are commonly described either by a distributional spacetime metric or, alternatively , by a continuous one. The transformation T relating these forms clearly has to be discontinuous, which causes two basic problems: First, it changes the manifold structure and second, the pullback of the distributional form of the metric under T is not well deened within classical distribution theory. Nevertheless, from a physical point of view both pictures are equivalent. In this work, after calculating T as well as the \Rosen"-form of the metric in the general case of a pp-wave with arbitrary wave proole we give a precise meaning to the term \physicially equivalent" by interpreting T as the distributional limit of a suitably regularized sequence of diieomorphisms. Moreover, it is shown that T provides an example of a generalized coordinate transformation in the sense of Colombeau's generalized functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...

متن کامل

A note on stable perturbations of Moore-Penrose inverses

SUMMARY Perturbation bounds for Moore-Penrose inverses of rectangular matrices play a significant role in the perturbation analysis for linear least squares problems. In this note, we derive a sharp upper bound for Moore-Penrose inverses, which is better than a well known existing one [12].

متن کامل

Binary Moore-Penrose Inverses of Set Inclusion Incidence Matrices

This note is a supplement to some recent work of R.B. Bapat on Moore-Penrose inverses of set inclusion matrices. Among other things Bapat constructs these inverses (in case of existence) forH(s, k) mod p, p an arbitrary prime, 0 ≤ s ≤ k ≤ v − s. Here we restrict ourselves to p = 2. We give conditions for s, k which are easy to state and which ensure that the Moore-Penrose inverse of H(s, k) mod...

متن کامل

The Conformal Flow of Metrics and the General Penrose Inequality

In this note we show how to adapt Bray’s conformal flow of metrics, so that it may be applied to the Penrose inequality for general initial data sets of the Einstein equations. This involves coupling the conformal flow with the generalized Jang equation.

متن کامل

An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse

A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009